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1. Changes with respect to the DoA (Descrip5on of the Ac5on) 
This milestone report is delayed by approximately 4 months due to unforeseen technical 
challenges associated with inverse model development, staff changes and staff absence.  

2. Dissemina5on and uptake 
Milestone M24 is the preparation of preliminary fossil fuel CO2 emissions estimates through 
inverse modelling for the PARIS CO2 focus countries, the UK and Netherlands. When they 
reach maturity, these inverse estimates will underpin contributions to future draft National 
Inventory Report Annexes, to be presented to the UK and Netherlands inventory compilers.   

3. Short summary of results 
The evaluation of fossil fuel CO2 emissions using atmospheric observations is extremely 
challenging because the observed variations in CO2 mole fraction measurements (e.g., Fig. 
1) are strongly influenced by biosphere fluxes. Here, we report on the current state of PARIS 
fossil fuel CO2 emissions evaluation in the UK and Netherlands using simultaneous 
atmospheric measurements of CO2 and O2, and using a high-resolution regional CO2 
inversion system. Our preliminary results demonstrate the challenging nature of this 
problem. Given the current uncertainties in these approaches, no discrepancies in the fossil 
fuel CO2 emissions inventories can be confidently derived at present. Improvements are 
expected in the next two years with the expanded CO2/O2 measurement network that PARIS 
and other projects will provide, along with continuing improvements in inverse modelling 
systems for the quantification of ffCO2 from atmospheric measurements. 

4. Evidence of accomplishment 
A brief summary of our preliminary results is presented below. Section 4.1 details a scoping 
study on the use of ffCO2 derived from atmospheric CO2 and O2 measurements combined 
with the UK Met Office NAME atmospheric chemical transport model, and Section 4.2 shows 
preliminary results using the CarbonTracker-Europe system atmospheric transport model. 
 

 
Fig. 1: Atmospheric O2 and CO2 data from Weybourne Atmospheric Observatory on the ICOS Carbon Portal 
website (see PARIS Milestone 21 report, Pickers et al., 2024, https://horizoneurope-paris.eu/wp-
content/uploads/sites/914/2024/05/MS21-Blind-inverse-modelling-experiment-protocol-published-final.pdf). 

https://www.carbontracker.eu/index.shtml
https://horizoneurope-paris.eu/wp-content/uploads/sites/914/2024/05/MS21-Blind-inverse-modelling-experiment-protocol-published-final.pdf
https://horizoneurope-paris.eu/wp-content/uploads/sites/914/2024/05/MS21-Blind-inverse-modelling-experiment-protocol-published-final.pdf
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4.1 Preliminary inverse es0mates of fossil fuel CO2 using atmospheric poten0al oxygen 
Disentangling the anthropogenic CO2 contribution to overall CO2 variability is challenging. 
On short timescales and regional scales, above- or below-baseline mole fraction 
deviations due to terrestrial biosphere CO2 mole fractions are often substantially larger 
than those due to fossil fuels. Concurrent atmospheric measurements of oxygen (O2) and 
CO2 can be combined into the tracer ‘Atmospheric Potential Oxygen’ (APO) according to 
APO = O2 + 1.1 x CO2, where 1.1 denotes the mean O2:CO2 ratio of exchange between the 
terrestrial biosphere and the atmosphere (Stephens et al., 1998; Severinghaus, 1995). APO 
is therefore, by design, invariant to terrestrial biospheric influences. APO has previously 
been used as a tracer for ocean carbon cycle processes, which occur predominantly on 
seasonal and longer-term timescales, but regional fossil fuel CO2 (ffCO2) influences can 
also be estimated in APO by subtracting a suitable baseline that incorporates these 
seasonal and long-term oceanic APO variations (Pickers et al., 2022), according to:  
 

ffCO2[APO] = (APO-APOBL)/RAPO      (1) 
 

where APOBL is the ‘baseline’ APO (i.e., APO that represents the well-mixed background 
conditions at that latitude without any local influences) and RAPO is the molar ratio (R) of 
APO:CO2 for fossil fuel emissions. 

Here, atmospheric ffCO2 mole fractions are derived from CO2 and O2 observations 
combined into APO, made at the Weybourne Atmospheric Observatory on the east coast 
of England. These APO-based ffCO2 mole are then used to evaluate simulated ffCO2 mole 
fractions at Weybourne using fluxes from the high-resolution CarbonTracker Europe (CTE-
HR) product. 

4.1.1 Atmospheric measurement approach for deriving ffCO2 

Concurrent atmospheric O2 and CO2 measurements have been routinely made at the 
coastal Weybourne Atmospheric Observatory (WAO) in the east England (e.g. Adcock et 
al., 2023) since May 2010, and at the Heathfield Tall Tower in Sussex from June 2021 – Nov 
2022, and from Jan 2024 onwards. These atmospheric O2 and CO2 measurements can be 
combined into APO as defined in section 4.1 above. The APO-derived ffCO2 mole fractions 
for WAO are shown in Fig. 2 for the year 2022.  
 

 
Fig. 12: Atmospheric ffCO2 mole fraction estimates at WAO from APO observations (black) and simulated using 
CTE-HR fossil fluxes and NAME footprints (blue) for all hours. 
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The APO-based ffCO2 estimates shown in this report are currently preliminary and do not 
currently include a full quantification of uncertainties. Uncertainties in the derived ffCO2 
arise from three sources: uncertainties from the CO2 and O2 measurements, uncertainties 
from determination of the baseline, and uncertainties from RAPO. The baseline and RAPO 
uncertainties usually dominate the overall ffCO2 uncertainty more than the measurement 
uncertainties. At present, the baseline has been determined using a statistical fitting 
technique known as ‘RFbaseline' (Ruckstuhl et al., 2012) with a smoothing window value of 
0.02, which for hourly data is roughly equivalent to 1 week. For RAPO, a constant value of 0.4 
has been used according to Chawner et al., (2024). Incorrect determination of the baseline 
and/or the mean RAPO value can lead to biases in the calculated ffCO2, thus it will be 
important to refine these terms in future work and to report ffCO2 uncertainties.  

4.1.2 Simula=ng a priori ffCO2 es=mates 

Hourly fossil fuel flux fields from the 2022 High Resolution Carbon-Tracker Europe product 
(CTE-HR; Van der Woude et al., 2023) form the a priori flux estimates of our simulation and 
inversion. CTE-HR fossil fuel fluxes have a 0.2o x 0.1o spatial resolution spanning 15 oW to 35 
oE and 33 oN to 72 oN, which are “re-gridded” to match the spatial resolution of the chemical 
transport model using a mass-conservative approach. Fossil fuel fluxes are produced using 
a dynamic anthropogenic emissions model that is driven by economic activity and energy-
use statistics, and meteorology from the European Centre for Medium-range Weather 
Forecasting (ECMWF) Reanalysis 5th generation (ERA5) meteorology (Hersbach et al., 
2020). Further details of CTE-HR fluxes are described in Van Der Woude et al., 2023.  

The relationship between surface emissions and atmospheric mole fractions measured at 
WAO was quantified using the UK Met Office Lagrangian dispersion model, NAME 
(Numerical Atmospheric dispersion Modelling Environment; Jones et al., 2007). “Footprints” 
of surface emissions sensitivities were calculated from particle back-trajectory ensembles. 
Each grid cell of the footprint describes the influence of emissions from that grid cell on 
the measured mole fractions at the measurement site at a certain time.  

Hourly footprints were calculated as described in White et al. (2019) with a ~25x25 km2 

(0.352ox0.234o) spatial resolution over a model domain spanning approximately 98 oW to 
40 oE and 11 oN to 79 oN using 30-day air-histories. The first 24 hours of the air-history are 
time-disaggregated to account for rapid flux variations in CO2 with the remaining 29 days 
of the air-history being time-integrated. This approach for modelling the transport of CO2 
fluxes is further described in White et al. (2019) and Chawner et al. (2024). Meteorological 
fields from the Met Office Unified Model (UM) underpin the footprints with hourly, high-
resolution (0.0135o x 0.0135o, 57 vertical levels up to ~12 km) UKV meteorological fields used 
for over the British Isles and three-hourly UM (0.1406o X 0.0938o with 59 vertical levels up to 
~30 km) global meteorological fields for the rest of the model domain.  

Footprints were combined with the fossil fuel CTE-HR flux fields to simulate atmospheric 
ffCO2 mole fractions at WAO (Fig. 2).  

4.1.3 Inverse modelling approach for deriving ffCO2 emissions 

Inverse models are often used to derive emissions estimates from atmospheric trace gas 
measurements through Bayesian inference. This measurement-informed (top-down) 
approach is typically independent of bottom-up emissions inventory totals and trends that 
are reported to the UNFCCC (United Nations Framework Convention on Climate Change). 
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Top-down approaches can therefore be used to evaluate emissions inventory estimates 
(e.g. Saboya et al., 2024; Manning et al., 2011), and identify where bottom-up 
methodologies may need refining.  

Bayes’ theorem often underlies the framework of atmospheric trace gas inverse methods. 
Here, a simple Bayesian inverse method is used to derive a scaling of the simulated ffCO2 
mole fraction, x, by comparing the NAME simulation to atmospheric trace gas observations, 
y, starting from an a priori estimate xa, equal to 1. Here, the NAME footprints are combined 
with the CTE-HR fluxes to define the forward model, K. Covariance matrixes SO and Sa 

capture model-observation uncertainties and a priori uncertainties, respectively. 
Uncertainties are assumed to be uncorrelated such that SO and Sa are diagonal. When 
Gaussian error distributions are assumed, the a posteriori probability density function, 
P(x|y), can be written as: 
 

𝑃(𝒙|𝒚) ∝ exp	(− !
"
	(𝒚 − 𝑲𝒙)#𝑺𝑶%𝟏(𝒚 − 𝑲𝒙) −

!
"
	(𝒙𝒂 − 𝒙)#𝑺𝒂%𝟏(𝒙𝒂 − 𝒙))  (2) 

 

The maximum a posteriori solution to (2) is: 
 

𝒙/ = 𝒙𝒂 + 𝑺2𝑲𝑻𝑺𝒐%𝟏(𝒚 − 𝑲𝒙𝒂)       (3) 
 

where 𝑺2, is the a posteriori covariance matrix,  
 

𝑺2 = 3𝑲𝑻𝑺𝑶%𝟏𝑲+ 𝑺𝒂%𝟏4
%𝟏

        (4) 
 

Diagonal model-observation ffCO2 uncertainties of 10 ppm were estimated, based on the 
largest below-baseline derviation of the observationally derived ffCO2 estimates, and a 
priori uncertainties of 100% are imposed. Data are filtered to retain observations made 
during the daytime hours (10.00-14.00 LT; Fig. 3). During the daytime, the mixed layer of the 
planetary boundary layer tends to be deeper and thus air samples are more representative 
of the region and better captured in the atmospheric transport model.  
 

 
Fig. 23: Atmospheric ffCO2 mole fraction estimates at WAO from APO observations (black) and simulated using 
CTE-HR fossil fluxes and NAME footprints (blue) filtered to retain data between 10.00-14.00 LT. 
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4.1.4 ffCO2 model-data comparison and inverse es=mates 

4.1.4.1 APO-derived ffCO2 mole frac6ons 

Mean WAO ffCO2 mole fractions of 4.7±4.7 (1s) ppm are derived from using the APO 
approach for the year 2022. However, in this approach ~10% of ffCO2 mole fractions have 
negative values, as all ffCO2 is calculated relative to the APO baseline fit with some APO 
values remaining above the baseline (whereas ffCO2 signals manifest as below-baseline 
excursions). Once ffCO2 uncertainties have been quantified, we expect that a significantly 
lower percentage of the dataset will result in negative ffCO2 values outside of the 
uncertainty ranges. In addition, using a baseline in future that is more consistent with the 
model-produced ffCO2 will help to eliminate baseline-related biases between the 
observation and model derived ffCO2 estimates.  Mean daytime ffCO2 values of 5.9±4.9 (1s) 
ppm are calculated between January and March 2022, whereas between October and 
December 2022, daytime ffCO2 had a mean value of 4.8±5.3 (1s) ppm. Higher ffCO2 values 
are expected during the winter months when energy demands from residential heating are 
typically higher compared to the summertime.  

4.1.4.2 Simulated ffCO2 mole frac6ons 
Hourly ffCO2 mole fractions were simulated at WAO for the year 2022 using CTE-HR fossil 
fuel fluxes combined with the atmospheric transport model NAME (Section 2.2). The mean 
simulated ffCO2 mole fraction is 3.1±2.8 (1s) ppm for the year 2022 when considering data 
from all hours. However, the mean ffCO2 mole fraction is 2.9±2.7 (1s) ppm when considering 
only daytime data from across 2022.  

Similar to the APO-derived ffCO2 estimates, when considering simulated ffCO2 mole 
fractions from January to March and October to December, the mean daytime values are 
higher than the annual ffCO2 means with a value of 4.1±3.9 (1s) ppm and 4.0±2.3 (1s) ppm, 
respectively.  

4.1.4.3 Inverse Modelling Results 
Monthly inversions were performed to infer a posteriori ffCO2 mole fraction estimates at 
WAO using daytime data (Fig. 4). We limited the scope of our inversions to January-March 
and October-December 2022. The results from these inversions are shown in Fig. 4. 

Across the January-March period an average a priori scale factor of 1.43 (0.14-2.97; 68% 
confidence interval) was inferred. This non-statistically significant scaling indicates that 
ffCO2 mole fractions are ~43% higher than produced in the simulations. For October-
December an average (non-statistically significant) a posteriori scale factor of 1.83 (0.15-
3.51; 68% confidence interval) was inferred indicating poorer agreement between the APO-
derived and simulated ffCO2 mole fractions during this period than for January-March. 
There are, however, instances when the a posteriori solutions do not capture certain large 
ffCO2 pollution events (e.g. in mid-February and in late November).  
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Fig. 34: Comparison of model and observation-based ffCO2 mole fractions at WAO between 10.00-14.00. APO-
derived ffCO2 are shown in black and simulated values (a priori) are shown in blue. The inferred (a posteriori) 
solution is shown in red with the 1-sigma uncertainty range indicated by the red band. 

 

4.1.5 Discussion  

Our preliminary inversions indicate APO-derived ffCO2 values are substantially higher than 
indicated by NAME simulations across 6 months of 2022. However, given the uncertainties, 
the derived scalings are not statistically significant, meaning that our results are 
statistically consistent with the bottom-up estimates. Furthermore, the APO-derived ffCO2 
values are preliminary and may change in future iterations following our refinement of the 
baseline and RAPO estimates. The presence of substantially below-background APO-derived 
ffCO2 indicates that the identification of background APO is likely to be a key area where 
improvements are needed. At present, the baseline used to calculate the APO-derived 
ffCO2 is not necessarily consistent with the model-derived ffCO2, which by definition will 
always have a baseline value of exactly 0. One potential way to overcome model versus 
observation baseline methodological differences is to examine the ffCO2 gradients (i.e. 
differences) between WAO and the Heathfield Tall Tower (HFD). Another way would be to 
compare ffCO2 between successive years, as again any baseline-related methodological 
differences should cancel out.  
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Through PARIS and the Horizon Europe CORSO project, two new APO measurement stations 
will be established in the Netherlands. Future versions of this study will incorporate these 
sites into the inversion framework as well as make use of APO data from HFD in Sussex, and 
will focus on the south-east of England and the Netherlands, the regions to which these 
data are most sensitive. 

4.2 High-resolu0on regional CO2 inverse modelling using CarbonTracker-Europe 
Similar to the APO inversion described above, the CarbonTracker Europe high-resolution 
regional  inverse system (CTE-HR-inv) uses Bayesian statistics to infer carbon fluxes. This 
system is based on CarbonTracker Europe (CTE, van der Laan-Luijkx, 2017) and its 
Lagrangian version, CTE-Lagrange (He et al., 2018) and uses the ensemble Kalman Filter to 
solve for regional carbon fluxes. On global scales, for which CTE is designed, fossil fuel 
emissions have a small uncertainty, about 5%, and the main uncertainty in the global 
carbon budget is in the ocean and biogenic fluxes. On the contrary, on the regional scale 
of CTE-HR-inv (shown in Fig. 5, fossil fuel emissions are more uncertain. This is because 
yearly, national fossil fuel use is quite well constrained, but spatio-temporal upscaling of 
these fluxes adds uncertainty. Over the domain (Fig. 5), the ocean plays a minor role. 
Therefore, we have chosen to optimise both fossil fuel emissions and biogenic fluxes in CTE-
HR-inv. 

Although the system is in principle similar to CTE-Lagrange (He et al., 2018), some key 
differences are present. Besides a code overhaul, from the R programming language to 
Python, we use both different prior assumptions and a different state vector. These are 
explained in more detail below. 
 

 
Fig. 45: The European domain of CTE-HR-inv, with fossil fuel emissions for July 8, 2018 as example. Taken from 
van der Woude et al. (2023). 
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4.2.1 Prior fluxes 

For prior fluxes we use the high-resolution fluxes from CTE-HR (Van der Woude et al., 2023). 
CTE-HR provides hourly fossil fuel emissions, as well as oceanic and biogenic exchange at 
a resolution of 0.1x0.2 degree over Europe (See Fig. 5). 

The fossil fuel emissions in CTE-HR are informed by open-source statistics, such as 
electricity generation and amount of fuel sold. With this information, the effect of carbon 
emissions by events such as the COVID-19 crisis, but also the reduction of electricity use 
during Christmas, are captured. 

The biogenic exchange in CTE-HR is estimated by the biosphere model SiB4 (Haynes et al., 
2020). SiB4 uses meteorology (taken from ERA5) to calculate carbon uptake by plants and 
exchange between different carbon pools. In CTE-HR, the 0.5x0.5 degree carbon fluxes 
from SiB4 are upscaled to the 0.1x0.2 degree resolution by applying a high-resolution land-
use type mask. The oceanic fluxes are taken from an optimised ocean product and 
upscaled based on temperature and wind-speed. 

4.2.2 Op=misa=on seFngs 

For the biosphere fluxes, we expect the errors in SiB4 to be land-use type specific. 
Additionally, we restart SiB4 from a steady-state, meaning that there is no age included. 
Therefore, we also expect errors in SiB4 to be forest age-related. Finally, different countries 
have different management regimes, resulting in different forest structures, which are not 
present in SiB4. We thus expect biosphere fluxes in different countries to behave differently. 
Based on these considerations, we optimise the net ecosystem exchange (NEE) per country 
per age-class. On each of these 503 parameters, we put an uncertainty of 2 umol/m2/s. To 
limit the degrees of freedom, we apply a decay in temporal correlation with a half-time of 
4 days. This synoptic time scale reflects the time scales in which weather patterns, and 
thus short-term variability in the biosphere, changes. We have chosen to optimise an 
additive scaling factor on NEE, as prior NEE can be both positive and negative, depending 
on the season, and is very small in the shoulder seasons. A very small NEE signal requires a 
very large multiplicative scaling factor. These potential issues are resolved with the 
additive scaling factor. 

Errors in total anthropogenic emissions stem mainly from errors in reporting and the use of 
the activity data. We therefore assume that these errors are unique for each of the 43 
countries in the domain. Contrary to NEE, of which the sign can flip depending on the 
season, anthropogenic emissions are always positive. Therefore, we have chosen to use 
multiplicative scaling for the anthropogenic emissions. This choice also results in smaller 
uncertainties at times when total prior emissions are smaller. The errors in the reporting 
and activity data that inform the anthropogenic emissions are slowly varying parameters, 
such as energy efficiency of the industry. We expect these parameters to change only 
slowly over time. We therefore apply a large temporal correlation, with a half-time of two 
weeks. We put an uncertainty of 20% on the anthropogenic emissions. 

We take the background as the optimised 3D mole fractions from CTE2022. Although these 
mole fractions are optimally consistent with the atmospheric growth rate, they are not a 
perfect representation of the CO₂ distribution. We optimise the background additively over 
8 regions, based on the wind-sector (NNE, NE, SE, SSE, SSW, SW, NW, NNW). We expect the 
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errors in the background to vary over synoptic timescales and have thus chosen a temporal 
correlation with a half-time of 6 days and an uncertainty of 0.3 ppm. 

4.2.3 Preliminary results 

We find that the European biosphere in 2021 has been a sink of about 300 TgC/y. We note 
that this is consistent with estimates by Scholze et al., (2019), Monteil et al., (2020) and 
Peters et al., (2010). Nevertheless, a significant uncertainty of 90 TgC/y exists in the 
biogenic European carbon fluxes. 

Simultaneously, we find that total fossil fuel emissions in the Euro-pean domain are about 
1200 TgC/y. This is consistent with inventories, although a direct comparison to inventories 
is difficult due to different processes included in different inventories. For the 
anthropogenic emissions, smaller uncertainties of 11TgC/y (1%) remain after optimisation 
with atmospheric observations of CO₂. 

Even though the our most likely estimate 
of both the total biogenic sink of CO₂ 
and the total fossil fuel emitted in 
Europe seem to be in accordance with 
previous findings, we cannot distinguish 
them in our inversions, based on only 
atmospheric CO₂ observations. This can 
be seen in Fig. 6, in which the flux 
deviations in both bio-genic and fossil 
fuels for individual ensemble members 
(N=150) is shown. Fig. 6 shows a clear 
negative correlation. This means that 
ensemble members with higher fossil 
fuel fluxes compensate this with lower 
biospheric fluxes. This effect is 
strongest for Germany, as most 
observation sites are in Germany. 

4.3 Conclusion 
The PARIS project, in collaboration with the Horizon Europe CORSO project, will establish a 
“mini-network” of four APO measurement sites in the south-east of the UK and the 
Netherlands. Here, we demonstrate our current capability using long-running 
measurements from Weybourne, the NAME chemical transport model and a simplified 
Bayesian inversion. Our preliminary results show some agreement between APO-ffCO2 and 
simulated ffCO2 mole fractions. However, the uncertainty in this approach is currently very 
large, and we cannot yet recommend a revision of inventory estimates. 

We performed and analysed an atmospheric inversion with high-resolution European 
carbon dioxide fluxes. Although mean total fluxes of both anthropogenic and biogenic 
fluxes are consistent with other data sources, we cannot distinguish the separate fluxes 
from only atmospheric CO₂ mole fractions. This shows that, to constrain anthropogenic 
emissions from the atmosphere, also a better constraint on biogenic fluxes is required. This 
can may be achieved by using different tracers that are complementary to CO₂ in the 
inversion system, such as APO or radiocarbon. 

 
Fig. 56: member-specific deviations for both fossil fuel (x-
axis) and biogenic (y-axis) fluxes over Germany for 
specific days of 2021. The negative correlation indicates 
that a member with relatively high fossil fuel emissions 
compensates with lower (more negative) biogenic fluxes. 
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